Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
mBio ; 14(2): e0328522, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2246542

ABSTRACT

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone. Here, we established an integrity framework to evaluate the spillover risk of an animal SARSr-CoV by testing how viruses break through key human immune barriers, including viral cell tropism, replication dynamics, interferon signaling, inflammation, and adaptive immune barriers, using human ex vivo lung tissues, human airway and nasal organoids, and human lung cells. Using this framework, we showed that the two pre-emergent animal SARSr-CoVs, bat BtCoV-WIV1 and pangolin PCoV-GX, shared similar cell tropism but exhibited less replicative fitness in the human nasal cavity or airway than did SARS-CoV-2. Furthermore, these viruses triggered fewer proinflammatory responses and less cell death, yet showed interferon antagonist activity and the ability to partially escape adaptive immune barriers to SARS-CoV-2. Collectively, these animal viruses did not fully adapt to spread or cause severe diseases, thus causing successful zoonoses in humans. We believe that this experimental framework provides a path to identifying animal coronaviruses with the potential to cause future zoonoses. IMPORTANCE Evaluation of the zoonotic risk of animal SARSr-CoVs is important for future disease preparedness. However, there are misconceptions regarding the risk of animal viruses. For example, an animal SARSr-CoV could readily infect humans. Alternately, human receptor usage may result in spillover risk. Here, we established an analytical framework to assess the zoonotic risk of SARSr-CoV by testing a series of virus-host interaction profiles. Our data showed that the pre-emergent bat BtCoV-WIV1 and pangolin PCoV-GX were less adapted to humans than SARS-CoV-2 was, suggesting that it may be extremely rare for animal SARSr-CoVs to break all bottlenecks and cause successful zoonoses.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Pangolins , SARS-CoV-2 , Zoonoses , Interferons , Phylogeny
2.
J Virol ; 96(9): e0003822, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1788914

ABSTRACT

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Subject(s)
COVID-19 , Lung , Neutrophils , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Lymphopenia/virology , Mice , Neutrophils/immunology , SARS-CoV-2 , Spleen/pathology , Spleen/virology
3.
Signal Transduct Target Ther ; 7(1): 83, 2022 03 11.
Article in English | MEDLINE | ID: covidwho-1740428

ABSTRACT

SARS-CoV-2 induced marked lymphopenia in severe patients with COVID-19. However, whether lymphocytes are targets of viral infection is yet to be determined, although SARS-CoV-2 RNA or antigen has been identified in T cells from patients. Here, we confirmed that SARS-CoV-2 viral antigen could be detected in patient peripheral blood cells (PBCs) or postmortem lung T cells, and the infectious virus could also be detected from viral antigen-positive PBCs. We next prove that SARS-CoV-2 infects T lymphocytes, preferably activated CD4 + T cells in vitro. Upon infection, viral RNA, subgenomic RNA, viral protein or viral particle can be detected in the T cells. Furthermore, we show that the infection is spike-ACE2/TMPRSS2-independent through using ACE2 knockdown or receptor blocking experiments. Next, we demonstrate that viral antigen-positive T cells from patient undergone pronounced apoptosis. In vitro infection of T cells induced cell death that is likely in mitochondria ROS-HIF-1a-dependent pathways. Finally, we demonstrated that LFA-1, the protein exclusively expresses in multiple leukocytes, is more likely the entry molecule that mediated SARS-CoV-2 infection in T cells, compared to a list of other known receptors. Collectively, this work confirmed a SARS-CoV-2 infection of T cells, in a spike-ACE2-independent manner, which shed novel insights into the underlying mechanisms of SARS-CoV-2-induced lymphopenia in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism , Animals , Caco-2 Cells , Chlorocebus aethiops , Humans , Vero Cells
4.
Emerg Microbes Infect ; 11(1): 902-913, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1730557

ABSTRACT

The immune memory of over 400 million COVID-19 convalescents is not completely understood. In this integrated study, we recorded the post-acute sequelae symptoms and tested the immune memories, including circulating antibodies, memory B cell, and memory CD4 or CD8 T cell responses of a cohort of 65 COVID-19 patients over 1-year after infection. Our data show that 48% of them still have one or more sequelae symptoms and all of them maintain at least one of the immune components. The chances of having sequelae symptoms or having better immune memory are associated with peak disease severity. We did four-time points sampling per subject to precisely understand the kinetics of durability of SARS-CoV-2 circulating antibodies. We found that the RBD IgG levels likely reach a stable plateau at around 6 months, albeit it is waning at the first 6 months after infection. At 1-year after infection, more than 90% of the convalescents generated memory CD4 or CD8 T memory responses, preferably against the SARS-CoV-2 M peptide pool. The convalescents also have polyfunctional and central memory T cells that could provide rapid and efficient response to SARS-CoV-2 re-infection. Based on this information, we assessed the immune protection against the Omicron variant and concluded that convalescents should still induce effective T cell immunity against the Omicron. By studying the circulating antibodies and memory B or T cell responses to SARS-CoV-2 in an integrated manner, our study provides insight into the understanding of protective immunity against diseases caused by secondary SARS-CoV-2 infection.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity, Cellular , Longitudinal Studies , SARS-CoV-2
5.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572660

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
7.
Emerg Microbes Infect ; 10(1): 1507-1514, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1310873

ABSTRACT

Severe respiratory disease coronavirus-2 (SARS-CoV-2) has been the most devastating disease COVID-19 in the century. One of the unsolved scientific questions of SARS-CoV-2 is the animal origin of this virus. Bats and pangolins are recognized as the most probable reservoir hosts that harbour highly similar SARS-CoV-2 related viruses (SARSr-CoV-2). This study identified a novel lineage of SARSr-CoVs, including RaTG15 and seven other viruses, from bats at the same location where we found RaTG13 in 2015. Although RaTG15 and the related viruses share 97.2% amino acid sequence identities with SARS-CoV-2 in the conserved ORF1b region, it only shows less than 77.6% nucleotide identity to all known SARSr-CoVs at the genome level, thus forming a distinct lineage in the Sarbecovirus phylogenetic tree. We found that the RaTG15 receptor-binding domain (RBD) can bind to ACE2 from Rhinolophus affinis, Malayan pangolin, and use it as an entry receptor, except for ACE2 from humans. However, it contains a short deletion and has different key residues responsible for ACE2 binding. In addition, we showed that none of the known viruses in bat SARSr-CoV-2 lineage discovered uses human ACE2 as efficiently as the pangolin-derived SARSr-CoV-2 or some viruses in the SARSr-CoV-1 lineage. Therefore, further systematic and longitudinal studies in bats are needed to prevent future spillover events caused by SARSr-CoVs or to understand the origin of SARS-CoV-2 better.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Cell Lineage , Chiroptera/virology , SARS-CoV-2/classification , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Animals , Host Specificity , Phylogeny , Severe acute respiratory syndrome-related coronavirus/classification
8.
Anim Dis ; 1(1): 4, 2021.
Article in English | MEDLINE | ID: covidwho-1199940

ABSTRACT

Three major human coronavirus disease outbreaks, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and 2019 coronavirus disease (COVID-19), occurred in the twenty-first century and were caused by different coronaviruses (CoVs). All these viruses are considered to have originated from bats and transmitted to humans through intermediate hosts. SARS-CoV-1 and SARS-CoV-2, disease agent of COVID-19, shared around 80% genomic similarity, and thus belong to SARS-related CoVs. As a natural reservoir of viruses, bats harbor numerous other SARS-related CoVs that could potentially infect humans around the world, causing SARS or COVID-19 like outbreaks in the future. In this review, we summarized the current knowledge of CoVs on geographical distribution, genetic diversity, cross-species transmission potential and possible pathogenesis in humans, aiming for a better understanding of bat SARS-related CoVs in the context of prevention and control.

SELECTION OF CITATIONS
SEARCH DETAIL